SYNCMASTER - IS A COMPUTER CONTROLLED, HYDRAULIC LIFTING SYSTEM THAT PROVIDES THE HIGHEST DEGREE OF SAFETY TO PERSONNEL AND PROPERTY ASSOCIATED WITH LARGE-SCALE ENGINEERING / MAINTENANCE PROJECTS.

Parameters within the lifting system can be set to ensure that the lift does not proceed outside a predetermined lift plan. SyncMaster can in real time monitor and calculate cylinder loads, stroke lengths, total loads and the centre of gravity – all of which will provide the operator with an alarm and automatically stop the lift from continuing should they exceed set parameters. The centre of gravity feature is a function that defines a programmable rectangular or circular boundary outside of which the centre of a mass cannot move. If the centre of mass approaches this boundary, an alarm is given and the lift stops automatically. This is a key safety design feature for use in the movement of tall or unevenly loaded structures. SyncMaster allows for precision control and monitoring of complex lifting applications. Every configuration, process, alert and operator function is displayed and recorded in real time, thus reducing the costly overheads associated with manual control, measurements and comparisons to lift plans. All lift and alert data is collected during the lift process and this data can easily be exported to an application for analysis and planning of future lifts.
The SyncMaster Multiple Points Synchronous Lift System allows for up to 16 power packs to be controlled by one master unit, giving a maximum of 128 individually controlled cylinder points.

The system constantly monitors cylinder positional and pressure data to safely and effortlessly achieve very accurate and repeatable load movements, regardless of weight distribution or size. One power pack controls up to eight single or double acting cylinders, or groups of cylinders. The ‘X’, ‘Y’ and ‘Z’ coordinates can be recorded for each cylinder, as required by the lift type. DURAPAC cylinder data may be selected from a drop down menu or manually entered for other cylinders. Pressure transducers allow pressure or load limits to be set for an individual cylinder or for all cylinders. Two linear transducers are available per lifting point to monitor cylinder and load displacement. Full data logging and real time graphical display is available for all lift variables.

Touch Screen
15 inch full colour touch screen withstands harsh environments. The glass is toughened making it both scratch and cut resistant.

Variable Flow Control
Variable frequency drive motor gives a wider pump flow range. This is controlled by a joy stick controller that governs flow and directional control of the hydraulic cylinders.

Control Valves
High cycle, high speed solenoid valves allow precise flow control. All valves are leak free and have a 100% duty cycle.

Pressure Transducers
Monitor load conditions at each lift point for maximum safety. Optional load cells are available for high precision weighing operations.

Stroke Transducers
High precision 40 pulses per mm linear transducers combined with high speed counter cards achieve precise positional control. Various stroke transducers are available including internal cylinder design. Optional tilt meters are also available.

Adjustable Flow Control Valves
Controls the flow during decent and can be preset and locked.

Lift Monitoring and Data Storage
Full pressure and displacement data presentation are available on screen to monitor the lift in real time. Lift data are stored and able to be downloaded in a format suitable for importing into Excel for further analysis and record keeping. This gives a permanent record of the displacement and load on every cylinder at defined time intervals.
1. **JOYSTICK MANUAL ONLY**
Each cylinder can be enabled or disabled then advanced or retracted and is controlled via the joystick with variable flow to the required position.

2. **UNIFORM DISPLACEMENT**
In this mode a parallel or correction lift can be performed. Parallel Lift - where the displacement of all cylinders are the same. Correction Lift - adjust the lifting surface to bring it to a flat plane.

3. **TWO POINT DISPLACEMENT**
Tilt a load to a new plane along one axis.

4. **THREE POINT DISPLACEMENT**
Tilt a load to a new plane along two axes.

5. **STAGED LOAD CONTROL**
Apply a set or stepped load to test pylons, anchors, etc. Programme up to 4 load increments, duration (in minutes) and tolerances.

6. **RETURN ALL CYLINDERS**
Returns all cylinders to their fully retracted positions.

7. **PRE-LOAD ALL CYLINDERS**
Each cylinder advances until a predetermined load is reached and system automatically records this as the lift start position.

8. **TEST PULSE ALL CYLINDERS**
Determines and controls final placement accuracy prior to the actual lift. The system will automatically test each lift point to verify achievable placement accuracy. Flow adjustment settings are available and the system automatically compensates to achieve desired placement accuracy.

9. **GRAVITY CENTRE**
The centre of gravity feature is a function that defines a programmable rectangular or circular boundary outside of which the centre of a mass cannot move. If the centre of mass approaches this boundary, an alarm is given and the lift stops automatically. This is a key safety design feature for use in the movement of tall or unevenly loaded structures.
DSM4038 - System Specifications

<table>
<thead>
<tr>
<th>DSM4038 - System Specifications</th>
<th>Standard Inclusions</th>
<th>Optional Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate</td>
<td>0.5-2.4 Lpm</td>
<td>• Externally mounted stroke encoder</td>
</tr>
<tr>
<td>Pressure Rating</td>
<td>700 bar</td>
<td>• Internally mounted stroke encoder</td>
</tr>
<tr>
<td>Motor Size</td>
<td>4.0 kW</td>
<td>• Dual encoder inputs per lift point</td>
</tr>
<tr>
<td>Amps</td>
<td>8.85</td>
<td></td>
</tr>
</tbody>
</table>